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Two-beam accelerators (TBAs) have been proposed as efficient power sources for next genera-
tion high-energy linear colliders. Studies have demonstrated the possibility of building TBAs
from X-band (~ 8-12 GHz) through Ka-band (~ 30-35 GHz) frequency regions. The RTA
(RELATIVISTIC KLYSTRON TWO-BEAM ACCELERATOR) project, whose aim is to study TBAs
based upon extended relativistic klystrons, is described, and a new simulation code is used to
design the latter portions of the experiment. Detailed, self-consistent calculations of the beam
dynamics and of the rf cavity output are presented and discussed, together with a beamline
design that will generate nearly 1.2 GW of power from 40 rf cavities over a 10 m distance. The
simulations show that beam current losses are acceptable, and that longitudinal and transverse
focusing techniques are sufficiently capable of maintaining a high degree of beam quality along

the entire beamline.

PACS numbers: 41.75.Lx, 41.85.Ja, 52.75.Ms

I. INTRODUCTION

Two-beam accelerators (TBAs) based upon free-
electron lasers (FELs) or relativistic klystrons (RK-
TBAs) have been proposed as efficient power sources for
next generation high-energy linear colliders. Studies have
demonstrated the possibility of building RK-TBAs in the
X-band (~ 8-12 GHz) [1] [2] and FEL-TBAs in the Ka-
band (~ 30-35 GHz) frequency regions [3] [4] [5]. Pro-
vided that further prototyping shows stable beam propa-
gation with minimal current loss and production of good
quality, high-power rf fields, this technology is compat-
ible with current schemes for electron-positron colliders
in the multi-TeV center-of-mass scale.

Previous work [6] has shown that considerable mi-
crowave power can be developed in a relativistic klystron
amplifier (RKA) configuration. With high beam current
(2-11 kA) and low kinetic energy (~ 500 keV), these de-
vices were typically limited by transport dynamics to
have single output structures. The cavities comprising
the rf circuit are designed to maximize the emitted mi-
crowave power at the output structure. Even though
the peak output power is high, the total efficiency is still
low, and much of the available kinetic energy in the beam
is dumped. The concept of the relativistic klystron two-
beam accelerator (RK-TBA) [1] [2] was developed to dra-
matically increase the overall device efficiency. In these
devices, less charge is transported (~ 0.5-2 kA), but at
greater kinetic energy (1-10 MeV) than in an RKA. Also,
the rf circuit i1s designed to produce only the required
power for a single or, at most, double length of high gra-
dient accelerating structure. As a result, the beams in
RK-TBA’s are much stiffer and are perturbed much less
than in an RKA configuration. They may be transported
over long distances to produce useful rf power in tens to

hundreds of output structures. The use of suitably de-
signed induction re-acceleration cavities and permanent
quadrupole focusing increases the net efficiency of these
devices to a level that is very competitive with tradi-
tional klystrons. The stiffness of the beams make them
attractive candidates for producing rf power at higher
frequencies than traditional klystrons can attain.

The high intrinsic efficiency of RK-TBAs derives from
the use of induction linear accelerators. This technology
is capable of generating and propagating electron beams
with kiloampere peak currents, megavolt-scale energies,
pulse lengths of up to microseconds, and at repetition
rates stretching up to the megahertz range [7] [8] [9].
The pulse format of the drive beam in the RK-TBA can
be tailored to match that of the high-energy accelerator,
and losses in the energy conversion and transfer processes
can be minimized.

RK-TBAs must deal with extremely challenging beam
dynamics. Induction linacs in general, and induction
linac-driven TBAs in particular, are known to suffer
from potentially debilitating cumulative transverse beam
break-up (BBU) instabilities [10] [11] [12]. A low-
impedance, low-frequency transverse BBU mode resides
within the induction cavities, while a high-impedance,
high-frequency BBU mode is present within the rf output
structures. However, it has been shown theoretically that
the effect of these instabilities can be greatly decreased
with appropriate design of the beamline transport and fo-
cusing system, and by tailoring some of the beam param-
eters [13]. Increasing the beam’s energy spread induces
rapid betatron phase mixing which effectively cancels the
effects of the low-frequency mode, and adjusting the fo-
cusing lattice to place the rf output structures at integral
betatron wavelength separation can reduce the growth
in transverse BBU from exponential to linear. This lin-



ear growth will eventually limit the length of the device,
placing a cap on achievable efficiency. The induction cell
cavities may also respond to the beam modulation and
extract rf power and/or affect the bunching.

Additionally, a strong longitudinal density modula-
tion must be imposed upon the beam and maintained
over the entire ’active’ length of the RK-TBA. Previ-
ous experiments conducted at Lawrence Livermore Na-
tional Laboratory (LLNL) examined the use of longitu-
dinal (velocity) modulation [14] and transverse (chop-
ping) modulation [15] techniques to generate a bunched
beam which then powered a number of different rf out-
put structures. These early relativistic klystron experi-
ments demonstrated that hundreds of megawatts of peak
power could be generated over many tens of nanosec-
onds pulse duration, with phase stability sufficient to
drive high-gradient accelerating structures. Further ex-
periments [16] [17] demonstrated that the drive beams in
these klystrons could be re-accelerated between rf power
extraction structures, while the beam modulation was
maintained in the presence of strong debunching forces.

Previous simulation efforts have shown that this is
possible if the output cavities are appropriately detuned
in their resonance away from the central frequency car-
ried by the beam’s modulation [18] [19] [20]. Tnduc-
tive detuning, in which the cavity resonant frequency (f)
is tuned slightly higher than the beam modulation fre-
quency (fp), introduces a phase offset between the beam
micro-bunches (or rf buckets) and the cavity mode oscil-
lation such that the early arriving particles in any lose
more energy than the late arriving particles. After tran-
siting the cavity, the beam head is moving more slowly
than the beam tail, and rebunching can occur. A cor-
relation between arrival time and axial velocity thus op-
poses the debunching space charge forces. For higher
energy beams, using a transverse chopping and modu-
lation scheme, relatively small (~ 30°) detuning angles
were found to maintain the beam’s modulation over many
extraction structures, even though a significant fraction
of the beam current must be discarded during the ini-
tial modulation process. For lower energy beams, using
a longitudinal modulation scheme, larger (~ 70°- 90°)
detuning angles become necessary, but no loss of current
is necessary for the initial modulation.

As discussed below, larger detuning angles induce a
large (up to +50%) energy spread in the ensemble of
particles comprising the individual micro-bunches. The
effect of this energy spread needs to be accounted for in
the description of the transverse beam dynamics. It also
remains to be demonstrated experimentally in a beamline
significantly longer than previously attempted.

The RTA project has been established at Lawrence
Berkeley National Laboratory (LBNL) in collaboration
with LLNL to study these and other issues. The pri-
mary effort of this test facility is the construction of a
prototype RK-TBA subunit. Presently, an experiment is
underway to study BBU and transverse dynamics in a
periodic system with strong focusing [21]. Concurrently,
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FIG. 1: RTA experiment layout.

the theoretical program is continuing to develop simula-
tion tools and to design the remaining portions of the
RTA beamline.

The purpose of this paper is to present the first fully
3-D, self-consistent results from simulations of the beam
dynamics and rf power production in a prototype RK-
TBA device from the modulation section through 10 m
of the Main TBA section. In Section II, we discuss the
basic layout of the RTA experimental beamline, and de-
scribe the components of the modulation and Main TBA
sections in detail. Section III describes the algorithms
and code used to perform the simulations. The longitu-
dinal beam dynamics are then described in Section 1V,
and connections are made to a simple 1-D equilibrium
theory. Transverse dynamics are described in Section V,
and the influence of the longitudinal dynamics upon the
evolution of the transverse beam envelopes is described
for the first time. The development of rf power in the
cavities is discussed in Section VI, and the relation of
the steady-state behavior of the individual cavities to the
evolution of the longitudinal beam phase-space is exam-
ined. The operating scheme of the RK-TBA prototype
is extended to include operation in an ’afterburner’ con-
figuration, which is described in Section VII. Finally, the
results are summarized and conclusions drawn in Section

VIIL.

II. DESCRIPTION OF THE RTA BEAMLINE

The entire proposed RTA experiment beamline is
shown in Figure 1. In the present design, the injector
for the system delivers a 1.0 MeV beam to the acceler-
ator, which boosts the energy to 2.5 MeV. This energy
is not optimal for either the SL4 klystron (velocity mod-
ulation, 1-2 MeV) or the Choppertron (transverse mod-
ulation, 3-5 MeV) [15]. Nevertheless, these simulations
demonstrate that the SL4 can produce sufficient modu-
lation in a higher energy beam to initiate the bunching
process and allow for high power generation. A similar
study utilizing the Choppertron will be conducted in the
near future.



Matching Quadrupoles  periodic Quadrupole Focusing Lattice

c
enoidFocusingg f /e’ /. \

18 mm 40 mm

Sol

RF Cavity and Output Waveguide Induction Cell Gap Pumping Port

FIG. 2: Modulation and extraction section in RTA de-
vice.
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FIG. 3: SL4 klystron gain cavities.

A detailed schematic of the SL4 and the beginning of
the Main TBA is shown in Figure 2, displaying the fo-
cusing elements, re-acceleration modules, and the first
nine rf cavities. The remaining portion of the beamline
used in the simulation is a continuation of the periodic
Main TBA section shown. The injector and accelerator
are assumed to deliver a 2.5 MeV, 1.0 kA beam with a
1000 # mm-mrad normalized edge emittance (250 7 mm-
mrad normalized rms emittance) to the entrance of the
SL4. Over the beam pulse, the beam energy is taken to
be constant while the current rises from 0 A to to its
steady-state value of 1000 A, with a 100 ns risetime and
150 ns flat-top.

A The SL4 Klystron Modulator

The beam modulation section of the RTA device is
the input and gain cavities of a previously designed and
tested relativistic klystron, the SL4 [14]. Figure 3 shows
a schematic of the input and gain section of the klystron
modulator. The cavity properties are shown in Table I.
The first (input) cavity accepts rf power from a low power
(< 5 kW), X-band, travelling-wave tube or magnetron
source, operating at a nominal frequency of 11.424 GHz.
The beam enters from the left in the schematic (z=0 m).
The input rf power modulates the beam energy in Cav-
ity 1 and initiates the bunching process. The following

Cavity 1 2 3 4
Frequency, f [GHz][11.428|11.393|11.447|11.469
R/Q] [ 60 | 60 | 60 | 60
Qext 320 120 120 120
Quai 4800 | 4800 | 4800 | 4800
Input Power [kW] | 1.0 0 0 0

TABLE I: SL4 cavity parameters.
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FIG. 4: One period of the Main TBA extraction section,
containing a single rf output structure, two induction
re-acceleration modules; and six pure-permanent-magnet
quadrupoles. The beam propagates from left to right
across the center of this schematic.

cavities are then driven by the rf component of the beam
current, which develops in the drift spaces between the
cavities.

Beam confinement in this section is performed by a
set of 4 independent solenoid magnets (shown as a single
solenoid in Figure 2). The solenoids have an inner radius
of 9.6 cm, an outer radius of 12.8 cm, and a length of
15.5 cm. An iron field clamp (shunt) is placed at the exit
plane of the ST.4 (z=0.98 m) to terminate the solenoid
field.

B Main TBA Section

A schematic of a single period of the Main TBA ex-
traction section is shown in Figure 4. Each module in the
lattice holds one output rf cavity with dual output waveg-
uides, six focusing and defocusing quadrupoles, and two
complete induction re-acceleration cells with gaps.

The rf properties of the modules are shown in Table
I1. The first rf cavity in the Main TBA lattice is Cavity
5. The first two cavities are inductively detuned by 1.3
radians (f=11.84 GHz) from the beam modulation fre-
quency (fp=11.424 GHz) to provide additional rotation
and compression of the longitudinal phase space for the
individual micro-bunches. All following cavities are de-
tuned by 1.2 radians (f=11.72 GHz). The steady-state
power output from each of these cavities can be estimated



Cavity 5-6 | 7-40
Frequency, f [GHz][11.84|11.72
[R/Q] [9] 31.6 | 17.2
Qear 50 | 50

Quail 4800 | 4800

¥ [radians] 1.3 | 1.2

TABLE II: Design Parameters of Main TBA Cavities.

via the analytic formula (see Appendix B)
Pout == IgchQext [g] COS2 1/}a (1)

where I4. is the average (DC) current carried by the
beam, b represents the degree of bunching in the beam,
Qeze is the external coupling (i.e. 'waveguide’-) loaded

cavity mode quality factor, % is the mode shunt

impedance factor, and v is the mode tuning angle with
respect to the beam modulation frequency (1.2 or 1.3
radians in our case) defined by

tany = Qr, (%—%) ) (2)

The cavities are designed to produce 50 MW of rf
power from a beam modulated at 11.424 GHz with a
bunching factor of b6~0.7 and carrying 950 A of DC cur-
rent. In this process, the output rf power is derived
from the kinetic energy of the beam. The induction re-
acceleration modules are then required to replace this
lost beam energy by supplying 26.25 kV across each of
the two gaps in each module.

Transverse focusing is accomplished by permanent
magnet quadrupoles arranged into the standard FODO
(focus-drift-defocus-drift-focus) lattice [22] [23]. There
are six quadrupoles in each 25 cm long TBA period, mak-
ing 3 complete FODO cells. The betatron phase advance
per FODO cell is 60°, so that the net phase advance be-
tween rf cavities 1s 180°, or one-half of a full betatron
period. To achieve this, the permanent magnets must
produce a 14 T/m quadrupole gradient. With a 4 ¢cm
beam pipe diameter, the magnet blocks must then have
a remanent field of 2800 G. While high, this is well within
the field strengths achievable with ferrites.

BBU Considerations

As previously mentioned cumulative beam break-up
instabilities stemming from the resonant excitation of
transverse dipole (H EM11) modes in the rf output struc-
tures post the most severe constraint on the ultimate
length of beamline that will produce usable rf power in an
RK-TBA system. It is thought that limiting the growth
of the instability to four e-folds (i.e. e* or approximately
10%) over the length of the entire device is sufficient to

transport the majority of the beam pulse. This is a stan-
dard that must be met by any length of beamline in the
Main TBA section.

In our beamline design presented here, the rf cavities
also support a set of dipole modes with resonant fre-
quencies near 18.6 GHz. The mode with minimal ex-
ternal port coupling (Qert ~ 200) shows a transverse
shunt impedance [7,/Q] ~ 120Q/m. We have simu-
lated the growth in the transverse mode amplitudes with
the OMICE code [25] for our beam parameters and this
beamline. With no energy spread across a given beam
slice (other than that due to the space charge depres-
sion - typically ~ 1%), and without appropriately spac-
ing the cavities with respect to the betatron wavelength
of the on-energy particles, the BBU instability is seen to
grow by ~ 8 orders of magnitude in the amplitude over
the 10m of Main TBA beamline. Appropriately tuning
the betatron wavelength to the nominal beam energy so
that the rf cavities are spaced an integer number of half-
wavelengths apart (the ’betatron node tune’), the growth
factor in the instabilty amplitude drops to less than 10.
Additionally, increasing the micro-bunch energy spread
increases the amount of betatron phase-mixing present
in the beam which also damps the instability, even when
the average bunch energy varies from the nominal (i.e.
the betatron node tune). The phase-mixed damping im-
proves with increasing energy spread until it reaches a
saturation point when the energy spread is greater than
~ +25%, at which point the growth factor is less than
10. As will be shown in the simulations discussed in this
paper, the micro-bunches in the beam will develop an
energy spread of up to ~ £50% from filamentation of
the longitudinal phase space due to the inductively de-
tuned rf structures. Hence, cumulative dipole BBU is not
expected to be an issue in RTA operation.

III. SIMULATION CODE

Particle dynamics in relativistic klystrons pose several
thorny problems for simulations. The electron beams
are typically intense (100’s to 1000’s of Amperes) while
only moderately relativistic (100’s of kilovolts to 10’s
of megavolts). Possibly the most important element of
the dynamics in an RK-TBA occurs in the longitudinal
phase-space. The beam is modulated at high frequencies
(11-40 GHz), and each micro-bunch (rf bucket) carries a
charge of 10’s of nC. Space charge effects will produce de-
bunching forces which are counteracted by (inductively)
detuning the rf output structures. A micro-bunch will
undergo numerous synchrotron oscillations during trans-
port through the full-scale device. Also, the micro-
bunches are not short compared to the rf wavelength;
they typically subtend 60°-120° of rf phase. Hence, they
sample very nonlinear fields in the rf output structures.

From this description we can identify the main prob-
lems present in a device simulation. The beams are



sufficiently intense that longitudinal space charge forces
present more than a small perturbation. The beamline
elements are necessarily spaced close together, and this
requires treatment of overlapping, nonlinear fringe fields.
Transverse focusing is strong so that a half betatron os-
cillation occurs between rf output cavities. Transverse
emittance, while low, is still sufficiently large that par-
ticles at the beam edge sample significant nonlinearities
in the fields of the beamline elements. The instanta-
neous energy spread is large (~ 10 - 100 %) to constrain
the low-frequency BBU, and to produce the bunching by
rf synchrotron rotation. The particle simulation, of ne-
cessity, must track many particles to provide adequate
sampling of both the beam phase-space and the fields
experienced.

Fully electromagnetic and relativistic particle-in-cell
simulations, popular in the plasma physics community
can and do simulate all these processes. Codes of this
type have found their way into the accelerator commu-
nity as a means of studying high-perveance beams in
klystrons, for example. However, the computational re-
sources required are far too great to perform routine de-
sign and optimization on significant lengths of the full-
scale TBA. On the other hand, typical tracking codes
in the accelerator physics community track a relatively
small number of particles with a small phase-space ex-
tent in complex external field environments. Self-field
interactions are either completely neglected since the
beams are usually tenuous and ultra-relativistic, or in-
cluded only approximately with semi-analytic models.
Maxwell-Vlasov, Fokker-Planck, and envelope codes can
track beam distributions in the presence of self-fields, but
these tend to track only a few of the lower order moments,
while ignoring evolution of the detailed phase-space dis-
tributions.

Past design efforts have utilized simulation codes that
could only model certain aspects of the entire prob-
lem. 1-D simulations [4] of the longitudinal dynamics
in an extended relativistic klystron do not account for
the transverse dynamics. 2-D [24] [18] simulations can
not accurately model beam dynamics in both solenoid
and quadrupole transport lattices. Previous 3-D simula-
tions concentrated on modeling the physics involved in
the transverse dipole BBU instability [25], but not the
dominant rf bucket dynamics and power production in
the cavity output structures. Additionally, all the previ-
ous results have utilized a simplified model of the forces
due to the self- (and image-) fields of the beam. These
models do not accurately account for the details of the
full beam distribution, and hence can not predict any
changes in that distribution that may subsequently af-
fect the interaction of the beam with the focusing lattice
and rf structures.

The current generation of simulation code has been
developed to account for all time-dependent and 3-D ef-
fects, and the details of the 6-D particle distribution [20]
[26] [27]. The entire beam pulse length is divided into a
sequence of micro-bunches with longitudinal extent cor-

responding to the modulation wavelength. These micro-
bunches are then tracked over the beam line. There are
three main components to this simulation.

The first is a tracking algorithm to generate nonlin-
ear transfer maps for pushing noninteracting particles
through the external fields based upon a Lie-algebraic
approach [28] [29] [30]. A mapping algorithm is used so
that tens of thousands of macroparticles can be pushed
from the solution of a few hundreds of differential equa-
tions. A single-particle, relativistic Hamiltonian is used
to derive exact equations of motion for a small number
of "guide’, or fiducial, orbits,

K= —ps

=—qd: - \/U%)Z —(m)* ~ (F1—aAL) B

where —p; is identified with the total energy of the parti-
Q}e. The external fields enter through a vector potential,
A (7,t). A gauge is chosen such that the scalar poten-
tial, @, is identically zero. The equations of motion are
then solved numerically over a given beamline interval.
The individual fiducial particles are chosen by partition-
ing the entire micro-bunch phase-space and selecting a
representative, hypothetical particle from each partition.
The partitions may be created in any manner. For these
simulations, we’ve chosen to partition along the longi-
tudinal arrival-time coordinate. A set of approximate
Hamiltonians is also constructed from a 6-D Taylor se-
ries expansion around the individual fiducial orbits. The
coordinates and momenta in these approximate Hamil-
tonians represent the difference between the actual coor-
dinates and momenta and those of the fiducial particles,
and are called 'deviation’ coordinates and momenta. The
Taylor series is expanded to 4th order in these ’devia-
tion’ variables, and provide equations of motion accurate
to 3rd order. The remaining particles in each partition
are then propagated along the beamline by the equations
of motion generated by the ’deviation” Hamiltonians (see
Appendix A)

The second component in the code is a particle-in-cell
(PIC) algorithm [31] that solves a set of Helmholtz equa-
tions for the self-fields, including the conducting bound-
ary condition of the beam tube. A multi-grid algorithm
[32] is utilized to speed the convergence of the PIC al-
gorithm. The generated impulses themselves constitute
a ’kick’ map, and are interleaved with the single-particle
maps by means of a split-operator algorithm [33] [34] [35]
[36] . This technique is based on splitting the Hamilto-
nian into pieces that can be solved exactly (or through
some desired order of accuracy), and then combining the
separate maps to produce an approximate net mapping
for the full Hamiltonian over some step (Az) along the
beamline. In the second-order scheme we adopt, the
split-operator method produces a net mapping that is
second-order accurate in the step-size represented by the
mapping (ie. the error introduced by splitting the opera-

tor is of order (Az)?’). Split-operator symplectic integra-



tion algorithms, including the well known leap-frog algo-
rithm of plasma physics simulations [31] [37], are widely
used in the treatment of Hamiltonian systems. The total
Hamiltonian is represented in the form

Htot:Hkin+Hext+Hself (4)

where Hp;n, 1s the kinetic portion describing single-
particle motion in the absence of all fields, H.;; is the
contribution from external fields, and H,.¢ is the contri-
bution from self-fields. The maps from the first two con-
tributions are calculated together by the single-particle
formalism described above, while the map resulting from
self-forces 1s calculated separately. A combined map is
then produced to advance particles over an interval 7.
Accurate through second order in this step, the combined
map is expressed as

(I)tot(T) - q)kin+ext(7-/2) : (bself (T) - (I)kin+e:ct(7-/2)~ (5)

The third component is an equivalent circuit equation
solver that advances the modal rf cavity fields in time due
to excitation by the modulated beam (see Appendix B).
The derivation of the equivalent circuit equation is well
covered in the available literature [38] [39] [40]. What is
new and significant here is the introduction of a descrip-
tion of the beam using a periodic Klimontovich distribu-
tion. This will allow us to calculate the average inter-
action of the rf mode with any 6-D beam distribution,
automatically accounting for slippage and beam loading
effects by incorporating actual particle trajectories. This
method only accounts for individual cavity modes, but
is many times faster than an electromagnetic PIC algo-
rithm. Finally, the circuit equation is separated into two
distinct time scales, and a first order ordinary differential
equation is derived for the slow scale time evolution. This
is then solved analytically in the limit of short (slow) time
scale intervals. Hence, by observing closely what happens
to a single micro-bunch during its traversal of a cavity,
we may study the transient dynamics in the entire system
without the need to track each consecutive micro-bunch.
For a slowly evolving system, we need only track those
micro-bunches separated by a large fraction of the cavity
mode’s free-oscillation decay time, which can be tens or

hundreds of rf bucket lengths.

Simulation Parameters

We have modeled the beam dynamics and the evolu-
tion of the cavity fields from initial transients into the
steady-state regime. The main parameters of the sim-
ulation are given in Table ITI. In this simulation 8192
macroparticles were used, and initially loaded into a 3D
semi-Gaussian distribution [50]. The initial normalized
rms transverse emittance, averaged over any given micro-
bunch, is 250 # mm-mrad (1000 # mm-mrad normalized
edge emittance). The rf and induction cavity field profile

Nominal beam energy [MeV] 2.5-3.0
DC beam current [A] 930-1000
YB€rms [* mm mr] 250-300
bunching parameter, b 0.5-0.8
FODO cell length 25/3 cm

Betatron phase advance/FODO cell (o0) 60°

Rf cavity spacing 25 cm
Rf output power/cavity [MW] 25-60
Induction gap voltage [kV] 26.25
Modulation frequency, f» [GHz] 11.424

Rf cavity frequency, f [GHz] 11.84, 11.72

Qr 50
[R/Q] [€] 31.6, 17.2

Total length 10 m

TABLE III: Main TBA parameters.

distributions in z are taken to be Gaussian with standard
deviations of 4.03 mm and 5.0 mm, respectively.

For the self-field calculations, the Helmholtz equa-
tion computational volume encloses a single 11.424 GHz
(2.624 cm long) rf bucket, extending transversely to the
inner surface of the 4cm diameter beam pipe. Since the
self-field potential is solved in the beam’s rest frame, the
micro-bunch length is dilated from the laboratory frame
by a factor of v and extends over approximately 15.5
cm. In this frame, the longitudinal to transverse aspect
ratio is approximately 4:1. This computational volume
encloses only a single rf bucket so we impose periodic
boundary conditions between the head and tail. Prior
to bunching, the particles in this volume are distributed
more or less uniformly in longitudinal position. During
the bunching process, this is no longer true. However,
the distribution of particles in longitudinal position will
still extend over most of this volume. Looking at fre-
quency components carried by the beam modulation, we
expect that the first few harmonics of the spectrum will
dominate. It is then possible to utilize only a relatively
small number of longitudinal grid points to adequately
describe the variation of self-field forces with longitudinal
position. In a similar manner, we expect the transverse
variation of the beam density to vary quite significantly.
Hence, we must use a larger number of grid points in the
x- or y-directions. For the simulations discussed here, the
computational volume was discretized into a grid with di-
mensions 33 x 33 x 8.

Inclusion of Transverse RF Dipole Mode Effects

These simulations do not include the influence of trans-
verse dipole modes in the induction modules or rf cav-
ities. Thus, we have not included the important BBU
instabilities that have shown to limit current transport
in RK-TBA’s. There are certain computational issues re-
garding the inclusion of multiple frequencies that lie out-
side the range of the fundamental and its harmonics. In
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FIG. 5: Micro-bunch current evolution from matching
section through main extraction section.

particular, the simulation tracks individual slices of the
beam pulse corresponding to an rf bucket where the tem-
poral rf frequency is specified initially. This frequency is
taken to be the one of highest interest. For the results
presented in this paper, this fundamental frequency cor-
responds to that of the resonant monopole mode of the rf
cavities. A separate simulation based around the dipole
mode frequency as the fundamental (and only including
the dipole cavity modes) can be accomplished, though we
do not discuss it at this time. At this time, several new
computational strategies are being pursued that could
enable multi-frequency simulations.

However, as a step forward in the sophistication of
modeling RK-TBA systems, this simulation shows that
pure rf monopole modes, 3-D space charge effects, and
quadrupole transport do not significantly increase the
transverse emittance in the beam.

IV. LONGITUDINAL PHASE-SPACE
EVOLUTION

The longitudinal dynamics of the particles in an rf
bucket constitute the heart of any RK-TBA. The energy
extracted from the micro-bunches in the rf cavities must
be replaced in the induction modules. The detuning of
the cavity introduces a nonlinear correlation between en-
ergy and phase for particles within the micro-bunch. This
induces the particles within the rf bucket to rotate in
longitudinal phase-space. The re-acceleration in the in-
duction modules is weakly dependent upon the DC beam
current, but the rf cavity field excitation is strongly de-
pendent upon both the DC current and the bunching
parameter.

In the simulation, we see that the DC current carried
by a micro-bunch in the middle of the pulse decreases at a
slow rate over the length of the device (Figure 5), and the
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FIG. 6: Bunching parameter variation along beamline
(dashed green line). The beam pipe wall radius (in cm),
and positions of the rf cavities are indicated by the solid
red line. The entrance to the SL4 klystron corresponds
to z=0.

bunching parameter varies significantly along the beam-
line. In Figure 6, we show the variation of the bunching
parameter along the beamline, with the positions of the
rf output cavities indicated. This figure clearly shows the
synchrotron oscillation that follows from the micro-bunch
rotation. In Figure 7, the longitudinal phase-space dis-
tribution of the bunch is shown after passing through a
cavity at various locations along the beamline. The indi-
vidual particle arrival time (¢) at the cavity exit plane is
scaled by the speed of light, and then translated with re-
spect to the central fiducial arrival time (¢g), s=c(t — o).

We also see another effect of inductive detuning. The
average energy of a micro-bunch in the steady-state por-
tion of the beam pulse increases in the first segment
of the main TBA beamline (Figure 8), as the bunch-
ing increases from its initial unbunched state to the final
bunched state. Simultaneously, the energy spread of a
micro-bunch will increase from its initial to its final value
(Figure 9).

The cavities are designed to extract their design power
from micro-bunches with the nominal design value of the
bunching parameter (ie. b = 0.70) and DC current (950
A). The beam will continue to gain energy from the in-
duction modules until this equilibrium state is reached.
Once the nominal bunching has been achieved, there will
be no net energy gain by the individual micro-bunch.

However, due to the synchrotron rotation required for
longitudinal stability, the beam will experience periodic
debunching and rebunching as it progresses along the
beamline. Neglecting the small decrease in total cur-
rent carried by an individual micro-bunch, this will re-
sult in the micro-bunch periodically losing more or less
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of its design energy as it passes through the series of
rf output cavities. This behavior is to be compared di-
rectly with the variation of bunching parameter along
the beamline, Figure 6, and is shown in Figure 8. Addi-
tionally, we see that the net energy of the micro-bunch
gradually increases. This increase in net beam energy can
be eliminated by slightly decreasing the voltage in the re-
acceleration gaps of the induction modules. However, the
synchrotron rotation will still result in oscillation of the
micro-bunch energy about some equilibrium value.

The steady-state theory [20] provides some insight into
the relation between cavity parameters, power genera-
tion, and synchrotron oscillations. For particles near the
beamline axis, the change in kinetic energy from the in-
teraction with the excited cavity mode is given by the
expression

() = _QL [%] |Tac|b

mc? /e
where 7 is the difference in arrival time between an indi-
vidual particle and the center of the micro-bunch. Aver-
aging over the rf bucket, the net beam power loss is then
given by

cos 1) cos (1 + wbﬂ , (6)

Py =Q [g] 12 6% cos? 4, (7

which is equal to the sum of the power absorbed by the
cavity walls plus that transmitted out of the cavity by the
external coupling ports. For the values of Q.11 and @zt
considered here (Table IT), we can neglect the tiny frac-
tion of the total power lost to wall heating, compared to
that coupled out the external ports. The energy modula-
tion given to the individual particles (A~y (a), relative to
the net energy loss of the micro-bunch as a whole (A7),
is then

Ay (ﬂ _ cos (1/} + wbﬂ . (8)

Ay bcos )

The induced energy spread along the micro-bunch due to
the interaction with an rf cavity can then be expressed
as

2[Ay]
bcosp’ )

which shows a strong, nonlinear dependence upon the
tuning angle. For small tuning angles the induced spread
is a smaller fraction of the net micro-bunch energy loss,
while larger tuning angles can produce very large energy
spreads. The tuning angle must be large enough to in-
duce a correlated energy spread that overcomes space
charge debunching, while small enough to limit the en-
ergy spread so that the particles within a micro-bunch
can be captured and contained by synchrotron oscilla-
tions. A 1-D linear, equilibrium theory formulation [41]

| ¢ | ¢o [F(¥, ¢0)]
0.60(1.22 0.34
0.80(1.66 0.47
1.00(2.13 0.57
1.10(2.38 0.60
1.20(2.66 0.60
1.30(2.96 0.57
1.40(3.33 0.50

TABLE 1V: Separatrix parameters from 1-D theory.

based on standard rf longitudinal dynamics [22] [23] [42]
can be used to find the equilibrium synchrotron oscilla-
tion wave number

QL Idc
ks = (kbéL) [ 2]/ cos 1 sin v (10)
Yoo me?/e

and the depth of the separatrix

ser _ o /5| (1080)° QL{ ]fdc
(Ay)"" =22 P —

F (¢, ¢0), (11)
with

F(,¢0) = \/cos i (siny — sin ¢g — [ — ¢o] cos 1/)2 :
12

Here, ky (= 27f3/c) is the beam modulation wave num-
ber, L the distance between rf cavities, 7o the equilibrium
beam relativistic factor (with 82 = 1 — 1/42), mc?/e is
approximately 511 kilovolts, and the separatrix turning-
point, ¢g, is determined by solution of the transcendental
equation

sin ¢g — @ cosp = 1P cos P — sin . (13)

The separatrix depth determines the energy spread that
can be accommodated in a stable rf bucket that under-
goes synchrotron oscillations with wavenumber, k;. Sev-
eral values of ¢g from a numerical solution to (13), as well
as factor F'(¢, ¢o) are tabulated in Table TV. Comparing
values generated by (11) with the phase-space distribu-
tions in Figure 7, we see that the simple 1-D formula
agrees to within ~ 20%.

V. TRANSVERSE PHASE-SPACE EVOLUTION

The behavior of the micro-bunches in longitudinal
phase-space affect the transverse dynamics as well. In
particular we notice that an initially matched transport
system, loses that feature as the micro-bunch compresses
longitudinally and its energy spread increases. An effect
of this compression will be to enhance the peak radial,
defocusing self-fields in the presence of the conducting
beampipe, while the enhanced energy spread introduces
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FIG. 10: Evolution of transverse rms envelopes (horizon-
tal: solid red ; vertical: dashed green). Beampipe wall
and rf cavities are superimposed (dotted blue).

lower energy particles into the transport lattice. These
two effects can, in principle, be dealt with by appro-
priately adjusting the strength of the quadrupoles along
the beamline. In our studies we have maintained a con-
stant parameter FODO lattice for simplicity of design.
In Figure 10 we show the evolution of the two transverse
rms envelopes (x and y) along the beamline for micro-
bunches in the steady-state portion beam pulse. Visi-
ble is the slight increase in the average envelope radius
at locations of peak bunching (near z=4 m and z=8.5
m). There is evidence here of an apparent state of quasi-
equilibrium since the synchrotron oscillation period en-
compasses many betatron periods. In this situation, the
rms envelopes of the micro-bunch can respond to the
slowly increasing (or decreasing) current density by slow
expansion (or contraction).

In Figure 11, we show the evolution of the normalized
rms transverse emittance. In the usual definition of the
rms transverse emittance [43],

e = (@)~ ) (19

(and similarly for y), the phase space is defined in terms
of position (z) and paraxial angle (' = v,/v,), and
ensemble averages are performed over the particles in
an rf bucket (denoted by the angle brackets, ()). In
these simulations, where a Hamiltonian approach is used,
the normalized canonical momentum (p; = py/mec =
Bz /me + qAz/me) is employed instead of z’. We will,
however, continue to refer to the emittance calculated
with p, as the rms transverse emittance. For parti-
cles born in a field-free region, the two definitions yield
identical results. There are some important differences,
though, which show up in the simulations.

From Figure 11, we may observe distinct types of be-
havior. First, we see that transverse emittance exhibits
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FIG. 11: Evolution of normalized rms transverse emit-
tances (horizontal: solid red ; vertical: dashed green).

slow, steady growth over the beamline, increasing by ap-
proximately 8% over the 10 meters. Secondly, there is
evidence of an oscillation in the transverse emittances
correlated to the synchrotron oscillation. The emittance
increases in the regions of the beamline where the beam
experiences bunching or rebunching, and decreases in the
debunching cycle of the synchrotron oscillation. This
is another indication of the quasi-equilibrium discussed
above.

The first observation can be explained by noting that
the beam is far from stationary in any part of this beam-
line. The detailed beam distribution is not matched,
since the beam rms energy spread is growing from a nom-
inal few tenths of a percent to 256%. We would expect
some growth in the transverse emittance.

The oscillation of the transverse emittance following
the synchrotron oscillation has a more direct explanation.
As the micro-bunches are compressed during bunching
or rebunching, the particles at the center of each micro-
bunch see an increasing charge density. The local trans-
verse space charge forces are now stronger and, over a
period of several betatron wavelengths, the rms beam en-
velope expands in response. At the opposite end of the
synchrotron oscillation cycle, the particles in the center of
the micro-bunch see weakening transverse space charge
forces as the micro-bunch expands. The envelope now
contracts. This state of quasi-equilibrium is shown in
Figure 10. However, as the beam envelope expands, par-
ticles with large amplitude excursions find themselves at
ever greater distances from the beamline axis. Hence,
they sample stronger nonlinearities in the fringe fields of
the beamline elements. These nonlinear fields then enter
the emittance computation via the canonical momentum.
In this way, the rms transverse emittance may oscillate
along with the bunching parameter.

The transverse phase-space distributions of the micro-
bunches at locations corresponding to the output planes



of several cavities along the beamline are shown in Figure
12. Tt is seen that the distribution does not undergo
any significant changes during propagation, and that the
micro-bunch remains stable along the beamline.

VI. DEPENDENCE OF RF PRODUCTION
UPON BEAM DYNAMICS

After an initial transient evolution of the cavity fields
in time, the mode amplitudes enter the steady-state
regime. This evolution is shown in Figure 13, where the
abscissa is the time elapsed (AT') as the beam pulse head
entered the simulation at z=0 m, scaled by the speed
of light, sg=cAT. The input cavity sustains a constant
power level reflected from the cavity. The power shunted
to the loads in the SL4 gain cavities is shown to indicate
the rise of the cavity mode amplitude from one cavity
to the next, betraying the increase in modulation ampli-
tude. Finally, the power shunted to the exit waveguides
in the output structures are displayed. We see that the
output power levels in the main TBA section cavities
vary by a factor of 2-3, and generally agree with the an-
alytic estimate given by Equation 1. The synchrotron
oscillations affect the coupling of the micro-bunch to the
rf cavities, resulting in an oscillation along the beamline
of the steady-state output power levels of the cavities,
shown in Figure 14. However, in a very long device -

one that allows the bunches to rotate through many
synchrotron oscillations it is expected that the parti-
cles will more evenly fill the rf bucket in longitudinal
phase-space through the process of filamentation so that
the oscillation in the steady-state output power amongst
later cavities will be damped. In fact, it may even be
desirable in an actual device to increase the initial en-
ergy spread in a micro-bunch, or to sharply decrease the
synchrotron wavelength at the front-end of the RK-TBA,
just to enhance the rate at which the longitudinal phase-
space bucket is filled.

Similarly, the output phases also show a periodic be-
havior. While remaining relatively constant in the re-
gions of rebunching and maximum compression, there is
a rapid change in the phase during the cycles of debunch-
ing and minimum compression, shown in Figure 14.

VII. EXTENSION TO AN AFTERBURNER
CONFIGURATION

At the end of a generic RK-TBA is an ’afterburner’
section, the primary purpose of which is to increase over-
all system efficiency by extracting more power out of the
modulated beam at the end of the main TBA. This sec-
tion has a number of rf extraction cavities, permanent
magnets for focusing, but no reacceleration cells. The
beamline design presented here also gives us the ability
to study beam dynamics in the ’afterburner’ section of a
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bunch after passing through cavities #: 1 (a), 5 (b), 10
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main TBA. In this case, no re-acceleration is applied to
the beam after z=4 m.

The evolution of the average energy and energy spread
of the micro-bunch along the beamline is shown in Figure
15. We see that without the benefit of re-acceleration,
the average energy in the micro-bunch will decrease at
a steady rate. As a result of this decrease in the micro-
bunch average energy, the normalized energy spread will
continue to grow.

The transverse phase-space is affected by this decrease
in energy. The transverse components of the Lorentz
force are proportional to 1/7, and hence become more im-
portant as the energy drops. We see the emittance grow-
ing rapidly as the energy continues to drop, accompanied
by growth in the beam envelopes (Figure 16). The trans-
verse phase distribution of the micro-bunch after the 40th
rf cavity is shown in Figure 17. The vertical phase-space
distribution has become significantly diluted, increasing
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from approximately 270 # mm-mrad in the previous sce-
nario (Figure 11) to approximately 310 # mm-mrad in
the present case, with the majority of this growth occur-
ring in the last 2 meters of beamline.

The increase in emittance and the beam envelope
causes a slight increase in the rate of current loss from
scraping. Meanwhile, the longitudinal Lorentz force is
proportional to 1/9° so that the drop in energy and in-
crease in energy spread results in a shortening of the syn-
chrotron oscillation period (Figure 18). This effect also
shows up in the output power and phase variation in
the cavities along the beamline (Figure 19), which also
demonstrate the synchrotron oscillations. We also see
that the beam quality in the longitudinal phase-space
is greatly diminished after the 40th cavity (Figure 20),
compared to our previous scenario (Figure 7).

VIII. SUMMARY

The results of a detailed simulation of the beam dy-
namics in the proposed RTA beamline have been pre-
sented. These results show that a prototype RK-TBA
can be designed to produce 1.2 GW of power at 11.424
GHz using 40 rf cavities and driven by a 1-kA, 2.5-MeV
electron beam. Beam losses amount to only 7% over the
10-meter long bunching and extraction section, while the
average transverse beam envelopes remain nearly con-
stant. In this same distance, the normalized rms trans-
verse emittances grow by only 8%. This occurs even
though the 6-D beam distribution is non-stationary and
the rms energy spread increases from a few tenths of a
percent to 25% of the average energy. By ’turning off’
most of the induction re-acceleration modules in the sim-
ulation, 1t has been demonstrated that this same beam-
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line can be operated in an ’afterburner’ mode, with useful
power generated with greater efficiency. This will allow a
single experiment to test different segments of a complete
RK-TBA system.

The lower limit in energy for a kiloamp scale RK-
TBA seems to be approximately 2.5 MeV. Below this
energy, the equilibrium beam size is too large to prop-
agate through the output structures without incurring
unacceptable losses [44]. However, the allowable nor-
malized edge emittance (12007 mm-mrad ) is twice that
previously expected (6007 mm-mrad) from earlier stud-
ies [45]. Hence, constraints on emittance growth during
beam generation and propagation to the modulator sec-
tion can be relaxed somewhat, if tighter control can be
maintained once the beam is in the Main TBA section.

The transverse envelopes can be matched, in mov-
ing between solenoidal and magnetic quadrupole focus-
ing lattices. However, matching the longitudinal sector
of the beam dynamics proves more difficult. This will
be true of any TBA device that attempts to match into
a channel with constant rf cavity parameters. To avoid
the large variation in output power levels from the var-
ious cavities along the beamline, it will be necessary to
incorporate a second-order design strategy. This strat-
egy may vary the parameters of the cavities to attempt
to achieve nearly constant rf power extraction from every
cavity. Doing so might prove to be unnecessary if a trans-
verse modulation is scheme is used so that only a fraction
of the longitudinal phase space defined by the separatri-
ces are occupied by beam particles. Larger detuning an-
gles than previously considered (70° instead of 30°), and
larger micro-bunch energy spreads (up to + 50%), can
be safely transported in the main TBA section. This has
important implications for reducing low-frequency BBU
via phase-mixed damping. The larger energy spread in-
duces rapid cycling of the synchrotron oscillation, further
enhancing longitudinal stability.
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APPENDIX A: FIDUCIAL TO DEVIATION
HAMILTONIAN

In this Appendix we derive the single-particle Hamilto-
nian function which describes the dynamics of the beam
particles lying close to the fiducial orbit. A simple canon-
ical transformation is applied to the Hamiltonian (3) by
constructing a generating function. The resulting trans-
formed Hamiltonian is then expressed in terms of the de-
viation coordinates and expanded in a power series rep-
resentation.

We will find it easier to analyze the Hamiltonian (3)
by first renormalizing the momenta, energy, time coor-
dinate, and potentials. To do so, we first define the
normalized quantities: K = K/mc , p;, = 7, /me,
—v = pi/mc?, and s = ct. Additionally, the potentials
are normalized via A = qZ/mc. With this normalization
the Hamiltonian function (3) becomes

K=-4 —\/<—7)2—1— (72 —A‘L)Q.

(A1)

1 Fiducial Orbit

A single-particle guiding orbit (the fiducial orbit) is
calculated which usually represents the motion of the
beam centroid or barycenter. Given a set of initial con-
ditions, the equations of motion derived from the Hamil-
tonian (A1) are solved to obtain an exact orbit for the
fiducial particle. This orbit is represented as a function
of z, and has the scalar components

§g(2) = (%4, Prg Yy, Pyg, Sg, —74) (2). (A2)
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The fiducial orbit described above produces a particu-
lar ’chart’ in phase space, connecting initial to final val-
ues. For particles with initial conditions near those of
the fiducial particle, the chart is equivalent to a map-
ping, taking initial values to final values. This mapping
can be derived analytically from the fiducial orbit and
the underlying Hamiltonian flow.

2 Canonical Transformation to Deviation
Coordinates

Individual particles are characterized in their initial
values by the difference of their phase space coordinates
from that of the fiducial orbit. The phase space coordi-
nates of a given particle are defined as

f(z):(m,ﬁ;,y,@/,s,—y)(z). (A3)
The deviation coordinates are defined as
€(2) = €(2) = &(2) = (7,62,5,8,,5,6,) (2),  (A4)

where €,(z) denotes the coordinates of the fiducial, or
‘guide’; orbit. These fiducial coordinates are scalar func-
tions of the affine parameter, z, and are used to con-
struct a canonical transformation via the type-2 generat-
ing function [46]

Fo(z,65,y,6y,5,65,2) = (2 — 24)(6z + Pag)

K=

+ (U = Yg) 6y +Pyg) + (5 = 59)(6s —75)- (A5)
The resulting
~ ~ F.
za@@@@3w92K+%? (A6)
z
Carrying out the derivation yields
—_ , — = 2
— A (TL+ Ty, 5459) = ([ (6 —vg) = 1= (‘SL +pry— AL (rL +Tga5+59))
(& = xg)Pry — (80 + Prg) + (= yg)Pyg’ — Yy(8y + Pug) + (5 = 5.)(=7,)" — 54(8: = 7). (A7)

3 Power Series Expansion

This Hamiltonian can now be expanded in a power
series [51] in the deviation coordinates,
K=Ko+Ki +K;+Ks+Ks+--. (AS8)
The lowest-order term in this expansion does not con-
tribute to the equations of motion since it 1s only a func-
tion of z, and so is neglected. By defining the particle
phase space coordinates in terms of deviations from the
fiducial orbit coordinates, the linear term in the expan-
sion is explicitly zero[52]. The remaining terms are of

second- and higher-order in the deviation coordinates.
For small deviations from the fiducial orbit, this power
series will rapidly converge. We will only consider terms
in the Hamiltonian up to fourth-order. This gives equa-
tions of motion valid to third-order.

It i1s useful to perform this power series expansion to
examine the effects of particular nonlinearities. We first
introduce a little shorthand notation. The vector poten-
tial is also represented as a power series expansion in the
configuration space coordinates about the fiducial orbit

A=A+ A+ A+ A+ A+,
AL=Ac+Ar+ Ay + A3+ As+ -

(A9)
(A10)



=Ag+ A, (A11)
The lowest-order term in this expansion give the values
of the vector potential components along the fiducial or-
bit, with higher-order terms adding contributions due to
deviations from this orbit.

The fiducial orbit relativistic factor, y,, has an asso-

\/1—1/42. Of course,

this assumes that the fiducial orbit does not reverse di-
rection. If this were to occur, the clauses of the Im-
plicit Function Theorem would be violated and the entire
framework presented here would be invalid. This could
conceivably be tolerated as long as the calculation of the
maps ceases when the forward momentum of the fiducial
reaches zero. At this point, we could switch Hamiltoni-
ans from K = —p, to H = —p;, re-parameterizing the
phase space, and keep integrating the equations of mo-

ciated normalized velocity, B, =
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tion. Physically, we are only in danger of invalidation if
we were to attempt modeling systems like conventional
klystrons, where the beam 1s violently decelerated over
a short distance. Fortunately, that is not the case in
RK-TBA systems.

The kinetic momentum differs from the canonical mo-
mentum which appears in the Hamiltonian functions. If
we denote the (normalized) transverse kinetic momen-

tum by 7, where @ = p, — A, then we may write

To=Ply — Ao = 7401y, (A12)
=681 — Ay (A13)

Higher-order terms, 73, etc. can be defined as the oppo-
sites of the corresponding term in the transverse vector
potential expansion, but this distinction will not be em-
phasized.

The deviation Hamiltonian is then expressible in the deviation variables as

K:%—E—\/(wﬂg)Q—?vgésﬂLé?— (fﬁ+ﬁ§—ﬂ)2~ (A14)
Combining terms in the deviation Hamiltonian
K= % — A, - {('rgﬂzg)Z — 2948 + 67 — 6] — 281 - Fo + 275 - Ay — (21:)2}1/2' (AL5)
After a little algebra, we obtain
p_0 4 1 2 2. o= (57 _ 3 Yo 1?2 v
(== z—(vg@g){l—m[5L—65+27965+27ro~(6L—A+)+A+ ]} . (A16)

The expression (A16) is now in a state from which we
can derive terms of the power series representation. We
can see that the terms of the series represent powers of
the ratio of [transverse momentum deviation : forward
momentum]. Thus, this series will converge more rapidly
for beams of small normalized emittance. It should be
noted, however, that the ratio is what really matters.
The fiducial trajectory is, in theory, calculated exactly.
It may represent an orbit with classical or relativistic

2

I/€2 =—A—

energies equally well (as long as it doesn’t reflect at some
position z).

Performing the power series expansion on (Al6) to
fourth-order, neglecting terms which are independent of
the deviation coordinates, and noting that terms first or-
der in ? cancel identically with the first term, we find
(dropping the ’g’ subscript from guide orbit quantities,
Yg, B:4) after some algebra

5(707) 46080 (757) +8(8)" (70°) +16(28.)°

; 60— 1"+ 270 - Ay

32 (75:)
15 (7)) 4120080 (757) + 8 (48)°

1668, (A1)

+ [v6, + 70 7],




3(707) +6(8)" (707) +460)" (702) +16(28.)°
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f{\S =—-A,;3—

16 (v4.)"

15(7) + 120" (7)) +804)°

(7o Ay + 77 A

[y8, + 7o - 7] [62 = 1” + 270 - o]

16 (v8:)"
5(77) +2080°
* 4(v8:)" [y6s + 7o - m1]", (A18)
3 2 N
_ 5 (@) +60m)" (7)) +80m) (7°) +1608)° -,
Ky=—-Az4— = [—Az +2m - Az +2mp - As
32(v4:)
2
15 (7)) +12008.)" (7°) +8(28.)°" b+ 7570 75 T+ 75 )
_ s +mg-m| |7o - + -
8(7/)’2)7 04 0- 71 [To- A3 1-As
2
(7)) +1208)° (70°) +8G8)" , _,
* 64 (78.)" 62 = 7"+ 27 )
15 (70" ) +6(98.)° .
- ( Oﬂ ) 7 [yés + 70 - 1] [63 — 0+ 27 A2] + 7 [0 +0-m]" (A19)
8(v8:)

Along with the equations of motion for the fiducial tra-
jectory, the power series expansion (A17), (A18), (A19)
provides a basis for linear and order-by-order nonlinear
analysis and solution of the equations of motion for the
entire ensemble of particles comprising the beam.

In the situation where no dipole fields exist, and the

8(v8:)

fiducial orbit has no transverse excursion from the beam-
line axis, these expressions simplify immensely. In this
case, mp = 0 = ﬁl, and 8, = 8 = /1 — 1/9%. The de-
viation Hamiltonian series terms (A17, A18, A19) takes
the limiting form,

Ro= A= g [ 7]+ s bl (A20)
Ro= A= gy 70 2] g b [ =70+ g e, (a21)
I/\i: —Aza— ﬁ [—;1;2 + 27 - ;1;,] - ﬁ [v6s] {ﬂ : Az] +
1 9 2 3 22 —~2 5 4 9
ol Gk vt O B Rl Rl vwrd LY (A22)

Comparing the two sets of expansions, (A17, AlS,
A19) and (A20, A21, A22) , we see that the coupling
of the off-axis fiducial momentum components with the
vector potential introduces new terms. These can be
treated and analyzed as pseudo-multipoles. In most cases
of interest, the fields in the accelerator beamline are only
weakly nonlinear, so that the power series can be seen
to rapidly converge. Even in the cases (such as rf fields)
where there is one coordinate (in the rf cavity case, the
arrival time s) along which the fields have a strongly non-
linear variation, taking multiple fiducial elements along
the range of that coordinate can restore the accuracy of

the finite power series expansion.

APPENDIX B: BEAM-CAVITY INTERACTION

This Appendix summarizes the theory and formal-
ism in the beam-cavity interaction we expect to find in
relativistic-klystron two-beam accelerator systems.



1 Fundamental Elements and Dynamics

In this section we describe the main elements that take
part in the dynamics: the cavity voltage and convection
current (beam). We will not undergo here the full dis-
cussion or derivation of the basic interaction as embod-
ied in the circuit equation. These are well covered in the
available texts [38] [39] [40]. We will merely make their
introduction, and briefly discuss some of their proper-
ties. The particular model of the current density which
provides the bridge between the circuit analogy and the
tracking code will be presented.

a Modal Flements and Dynamics

We are specifically concerned with the interaction of
the beam with the fundamental monopole mode (T'My1¢)
in a single standing-wave (SW) idler or output cavity, and
with the fundamental T'F19 mode in any coupled, exter-
nal waveguide. Application to transverse deflecting or
focusing modes can also be handled with this formalism,
with little variation.

We will assume that the fields in the cavity are domi-
nated by a single monopole mode. We express the cavity
electric field as a product of a time-dependent mode am-
plitude with a spatial mode profile (indexed by A),

E(7,t) = ax(t)Ex(T). (B1)
The spatial profile of the mode is assumed to have the
so-called ’Slater’ normalization [38],

/ ) PrEANT)- EAN(T)=1 (B2)

Other normalizations are sometimes used. Another
one we employ will be described later. The spatial field
profile is assumed to be static; all of the temporal be-
havior of the field enters through the mode amplitude.
This is the quantity which is used to describe the cav-
ity voltage as seen by the beam, and is proportional to
the electric field in any output waveguide. Knowing the
spatial mode profile, and the total electric field at time
t, the mode amplitude can be defined by

aA(t):/ ) dPrE(7,t) Ex(T). (B3

The other dynamical quantity is the current den-
sity representing the beam travelling through the cavity
structure. We define a modal current density by com-
puting the overlap of the time-dependent current density
with the spatial profile of the mode electric field,

J,\(t):/ ) &PrT(7,t) - EA(T)  (B4)
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such that

T(7.1) = L(OEA(T). (B5)
The cavity may have coupling that permits rf power
to enter or leave. This coupling can be weak or strong.
Viewed in terms of steady-state behavior, this coupling
is typically characterized by an external-coupling qual-
ity factor, Q.p¢, of the cavity. We may also describe
the coupling as an impedance transformation from the
mode amplitudes (for incoming and outgoing waves) of
the attached waveguide, through the coupling port sur-
face, to the mode amplitude of the resonant cavity. This
coupling surface is usually taken to lie in the transverse
plane of the connecting waveguide, a short distance (< )
from the cavity. Slater [38] calls this surface 'the plane
of the detuned short.” Collin [40] defines this plane as
to lie sufficiently far from the physical cavity aperture
that evanescent mode amplitudes are negligible. In ei-
ther case, we define a relationship based on the conti-
nuity of the transverse electric field at the port surface
between the incoming (+) and outgoing (-) waveguide
mode amplitudes, and the cavity mode amplitude,
Vit + V7 = Vias. (B6)
Here, the external coupling parameter, V1, measures the
overlap between the cavity mode ("A’) and the fundamen-
tal waveguide mode (’1”). This is a reasonable assump-
tion for klystron input/output ports. The external cou-
pling parameter may be related to the external Q-value
of the cavity via the relation

cowr L1
Via = ——,
Qert

where, 7.1, is the characteristic impedance of the waveg-
uide mode. This coupling can be calculated, or measured
on the bench with a network analyzer.

As detailed in the references [38] [39], we write down
an equivalent circuit equation describing the time evo-
lution of the mode amplitude due to excitation by both
the external rf current drive and the incoming waveguide
mode, and losses from wall heating, beam loading, and
coupling to the outgoing waveguide mode,

d2 (75% d 9
— t) =
(dt? 0. @ +“A) ax(t)

1d wy d (VF -V~
= ———J\(t — . (B
ca o < Vix (B8)

(B7)

This equation is equivalent to a damped harmonic os-
cillator, driven by two independent source terms. The
un-driven oscillator term contains two external parame-
ters related to the resonant mode: the angular frequency,
wy; and the wall-loss quality factor, @,,. They can be de-
termined from cold-cavity experiments or numerical sim-
ulations.



Since the temporal structure of the fields and currents
is predominantly harmonic in nature with an angular fre-
quency, ws, close to the resonant frequency of the cavity,
it will be helpful to consider the corresponding frequency
domain description. We may assume that the modal
amplitudes and spatial profiles are real-valued functions.
For quasi-steady-state harmonic oscillation at the mod-
ulation rf frequency, we express the time-dependence of
the rf amplitudes as

ax(t) = ay cos(wpt + ©a),
Ja(t) = j; cos(wpt),
VE(t) = 0% cos(wit + v+ ). (B9)

It will be convenient to also use complex-valued quan-
tities. In this case we may express the time-dependent
rf modal amplitudes as real parts (denoted by R) of a
complex phasor,

ax(t) = R {ax exp [—i(wst + ©1)]},
@) =R {j; exp [—iwbt]} ,
ViE(t) = R {0F exp [—i(wit + 1]} -

These time-dependent mode amplitudes have constant
coefficients. This is approximately correct on the time
scale of the rf modulation period (73), but these ampli-
tudes also possess a slow time variation as well. This
slow variation will be discussed further in Section 2.

(B10)

b Normalization of the Cavity Electric Field

Returning to the problem of the beam-cavity interac-
tion, we observe that the simulation model employs a
paraxial approximation based upon a description of the
fields near the beamline axis. In particular, we only con-
sider the on-azis longitudinal electric field profile and
assume that i1t is only a function of longitudinal posi-
tion (z), with a separable time dependence. The values
of the field and its derivatives along the axis are used to
generate all other electric and magnetic field components
(permitted by symmetry) near the axis by construction
of the vector potential, A, (7,1). From the point of view
of the simulation, we need only those field components
along the axis, a complete description of the rest of the
cavity is unnecessary.

However, without the detailed description of the total
electric field profile throughout the entire cavity, we are
unable to normalize the modes according to the Slater
prescription (B2). But, this normalization needn’t be
performed in the particle tracking simulation, 1t may
also be done when the modes are initially generated by
electromagnetic codes [SUPERFISH, URMEL, MAFTA,
GdfidL, et. al.]. This can be performed through a combi-
nation of analytical modeling of the on-axis field profile
with numerical calculation of the circuit [r/Q]. This re-
lates the on-axis voltage seen by the beam to the total
energy stored in the cavity.
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The longitudinal component of the monopole mode
electric field profile in single-cell cavities with open
beampipes is well approximated by a Gaussian distri-
bution along the beamline axis. The standard deviation
() can be obtained from simulation data by appropriate
fitting procedures. The longitudinal field profile of the
monopole mode can then be represented by

2 exp [_%] = Nyeo(z),  (B11)

EZ)\(Z) - 2o

for a cavity centered at z = 0. Here, N is the normal-
ization constant that we wish to determine. In terms of
the modal fields, the circuit [r/Q] is defined for constant
velocity (f3,) particles as

[é] A - 6030,\
(B12)

An accelerator [R/Q] is also widely used in the accelera-
tor literature, where [R/Q] = 2 [r/Q].

To derive an expression for the normalization constant,
we substitute our analytical approximation for the on-
axis field profile. Incurring a negligible error, we extend
the limits of integration in the above integral to +00. We
then find our normalization constant to be,

1/2 2 2
B r wio
%= (o |g] ) o [357]

This defines the connection between the modal fields used
in the circuit analogy, and the fields used in determining
the beam dynamics. We refer to this definition of the
field, eg(z), as the ’line voltage’ normalization such that

/_+Oo dzeo(z) = 1.

o0

2

/ dz E,\(z) exp [iwyz/ B c]
cavity

(B13)

(B14)

¢ Periodic Klimontovich Current Distribution

The connection between the discrete particle descrip-
tion employed by the tracking code and the current den-
sity used in the circuit equation is made by appealing to
the Klimontovich distribution [47]. Since the rf ampli-
tude of the modulated current density varies only very
slowly on the rf time scale, the charge per micro-bunch
and the distribution function appear to be periodic when
observed over a few rf periods’ duration. We describe the
time dependence of the charge density distribution by ex-
panding in a Fourier series basis defined over a single rf

period
T(7 )= 7Q% NN

n=1 0 (71 = T1z) x
X6 (t—1n),

(B15)

JA7,t) = $Jo(T) +
+ 30, [JH(7) cos (lwpt) + I (7 ) sin (lwpt)] |
(B16)



for t,t, € [-T3/2,Ty/2]). Here, N is the number of par-
ticles carried in a simulated micro-bunch, and @Qj is the
total charge carried by the beam current past a station-
ary observer in a time 7j. Hence, the beam DC current
averaged over an rf period is Iy = Q;/Ty. We further
assume that the particle distribution within the micro-
bunches 1s quasi-periodic with period 7. Individual par-
ticles in the micro-bunch pass the beamline position zg at
times t,(zo) and at transverse positions 7 1 ,(z0). The
relativistic nature of the beam allows us to neglect the
Integrating, we obtain

+
Jz( )( =

Re-assembling the Fourier components,
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transverse current density components, provided the rf
power extracted from the beam in single cavity is only a
small fraction of the total beam power.

We compute the Fourier components of the current
density,

f; Tb/Z
()= _ 2 cos(lwyt) _
J, (r)_Tb/ dt(sin(lwbt) J, (7,1).

—Tb/2

(B17)
ol cos(lwpt,
2_: FL—TLa) < sin((lwb:ng ) ' (B18)
(7,t) = Ib— Z 62 F1—Tin) {1 +2 Z [cos(lwpt) cos(lwpty, ) + sin(lwpt) sin(lwpt, )]}
- (B19)

=I— 252 T —TTh) {1+22cos[lwb(t—t)]} (B20)

=1

The modal current density at time ¢; is now calculated to be

D)= [ (T ) Ea(T)
cavity

1 N

= Ib—

n=1

=1 </ dz E.» (FT, z)> +20)) </ dz B, (FT, 2) cos [lwp (to — t(z))]> :
cavity =1 cavity

NZ/ dzEz)\(r_J_’n,z){1+22cos[lwb(t0
cavity

)

=1

(B21)

We have denoted with angular brackets, (), an average over the distribution of particles within an rf bucket. Here,
t(z) is the arrival time at beamline position z with transverse offset 71 of an element of the current density. Again,
it will be convenient to use the real parts of complex-valued quantities,

Ia(t) = Iy < / » dz B (7T, z)> + 21, i R {exp [—ilwyt] < / » dz B, (7T, 2) exp[ilwbt(z)]>} . (B22)

=1

This particular integral of the modal electric field oc-

curs so often that we will just define,
W(w,77) = / dz B, (FL,, z)exp [—iwt(z)] . (B23)
cavity
The phase convention employed in this definition corre-
sponds to #(zmia) = 0, where zy;q is the longitudinal
position at the center of the cavity. This convention is
applied to the fiducial orbit only, all other particle orbits
introduce relative phase changes.

The particular function defined by (B23) plays an ex-
tremely important role in the dynamics of the beam and
the evolution of the cavity field amplitude. It serves to
define the cavity voltage, and hence the mode [R/Q] and

shunt impedance. It contains transit time effects, and
when applied to beam particle trajectories in the pres-
ence of a background rf field, it will then compute beam
loading contributions to the shunt impedance and the net
energy deposited into the mode. We will refer to it as the
mode transit function.

The modal current density in (B10) can then be ex-
pressed as

Ia(t) = I (@ (w

+ 21 i R {exp [—ilwyt] (T (lwy, 77)) } (B24)
=1

=0, F]f)>

For the beams we consider here, only the [ = 1 term



is necessary to retain for the monopole mode. Higher-
order azimuthal modes may couple to higher harmonic
components in the beam’s spectrum.

2 Analysis of the Circuit Equation

Here we will employ the elements developed in the pre-
vious section. We will assume that there exist two dis-
tinct time-scales of interest. A fast time-scale, where
variations are seen to occur within an rf period, and a
slow time-scale. The latter can be taken to be the fill
time of the cavity (Tp = T3@x/7), the rise time of the
driving current, or some other relevant time-scale. The
mode amplitude and current density are modulated at
the fast time-scale. But the evolution of the amplitude
as well as any phase drift occurs on the slow time-scale.
As a result, we may re-write the governing circuit equa-
tion in terms of these slowly-varying quantities and the
slow time-scale.

a Slow Time-Scale Equation of Motion

We introduce slow time variations into the modal am-
plitudes and phases,

ax = ax(t), ex = palt),
Tr = 2L,(t) (@' (w, 77
(B25)
where the time-dependent quantities are all real-valued

functions. These functions are required to be slowly vary-
ing in time with respect to the rf period. For a quantity

f(t), this means that ‘%‘ &K |fwp|. We substitute these

into the circuit equation (B8), and neglect second-order
time derivatives of slowly-varying quantities,

(6 - " - ) (@) +
+ (g - 2i) # @) =

z'w) (@"’e_er — ﬁ_e_w—)

— __wa (i_
T QextVix \dt

_ o) (& —iw) I.

€0 dt

(B26)

This equation can be simplified by introducing a voltage
normalization. We define an on-axis cavity circuit volt-

age (‘Z), and forward (f/;) and reverse (‘71;) port voltages
in the mode transit normalization via

7. = (@@ei),

_ 11701AJ+6_“"+
- Via )

-
Vi = (75@"6"“‘ ) , (B27)

Via
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where wg = W (wp, 7T = 0). In this normalization, the
continuity of the transverse electric field at the port plane
is expressed as

V. = Vr + V& (B28)

In the absence of any beam the mode transit function,
w, is undefined. However, there may still be fields present
in the cavity as well as coupling through the ports. In this
case, we will utilize a different scheme, the port overlap
normalization,

V.= (Viaaxe™™2)
Vp = (Tre—ivt),
Vi = (17emi-). (B29)
As defined, these voltages are complex-valued. The

micro-bunch-averaged accelerator shunt impedance is de-

fined through Ry = Qx ([R/Q)]), where

([a) -2

With these definitions, the circuit equation (B26) be-
comes (in the mode transit normalization)

(w3 —w? = i) Vo4 (52 —2iw) 47, =

(= [ (5 73) o (8]} 8]
(B31)
Using the continuity condition (B28), we may express

the reverse voltage in terms of the cavity and forward
voltages. Doing so, the circuit equation becomes

<w§\ —w? = —“é‘;*) f/; + (5—2 —2iw) %170 =

= (# =) g Ve - ([8]) 1]
The loaded quality factor, QQr, has been introduced
with the definition

1 n 1
QL Qw Qem ’
which is a statement of net power loss in the cavity’s
fields in the absence of beam coupling.
From standard microwave terminology, we recall the
definitions of the tuning angle, 1, cavity fill-time, TF,
and coupling parameter, 3,

(B30)

€
>t

S

(B32)

(B33)

tany = Qr, (“:U—* — ;”T) , (B34)
Tp = 23;, (B35)
T, (B36)

and introduce the phase change in a fill time, v = wTF.
The circuit equation can now be written as

WW . ~ Wi o\ d =
—t1—— (14 2tan Vc—}—<——2zw) —V. =
QL ( v) Qr dt

(8- e (8] o




Since @y, is typically several thousand or more, we ne-

glect terms of order O (ﬁ
terms of 7 = t/Tp (using primes to indicate derivation).
We also introduce the supplementary parameters

), and express derivatives in

1—i/v
=5 (B38)
and
a=p(l+itany)). (B39)

In Section 3, it will be shown that the shunt impedance
as defined here is a complex-valued quantity, but that it
can be expressed as,

lal)=1a],»

[R]  lwol”
= =9

Q A €owW
is a manifestly real-valued quantity, and Fj is a complex-
valued distribution-dependent form-factor, with magni-
tude of order unity. This form factor provides a measure
of the spacetime overlap of the micro-bunch distribution
with the mode on the time-scale of the rf period. It’s cal-
culation takes into account the individual electron trajec-
tories, and hence accounts for beam-loading effects. With
the distribution independent shunt impedance,

(B40)

where

(B41)

Ry=Qr [g] (B42)

3
A

the circuit equation takes its final form,

V. +al=p (1 + ii) [ 20 - RAFbIb](B43)
Bg+1

Ve =V.—Vp. (B44)
This is the main result of this section. We solve (B43)
for the special case of linear variation of the current with
time. This will give us solutions valid for both the initial
and final ramping portions of the beam current as well as
the flat-top. We do not attempt to find a global solution
over time, which requires inclusion of the self-consistent
interaction of the cavity back upon the beam. Rather,
we will seek a local solution, valid only over a short time
duration (though still long compared to the fast time
scale), as an approximation to use within the numerical
simulation to advance the cavity mode voltages in time.

b  Analytic Solution for Short (Slow Scale) Time Duration

The circuit equation above (B43) can be simplified
slightly by introducing parameters that absorb the local
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time-dependence of the beam current and forward power,

B =145 50, (B45)
Br(r)=1+ g%((:)) (B46)

Both these factors become unity under steady-state con-
ditions. Equation (B43) is now

~ ~ 205 —
Vo +aV, = ——uBpVr — Ra\FyuByl;.
/H_l/lFF Ao DY Ly

We integrate this differential equation over a brief time
interval compared to the slow time scale, but over many
rf periods. We assume that the micro-bunch dependent
form factor (F3) is nearly constant, which is a good ap-
proximation provided the cavity voltage does not change
by a significant fraction of the beam voltage over the
interval of integration. In other words, we assume the
intra-bunch particle motion remains nearly identical from
micro-bunch to micro-bunch, so that the bunch-averaged
quantities like emittance and energy spread do not ap-
preciably vary over the interval of integration. This par-
ticle motion is calculated by the tracking algorithm based
upon fields excited from the passage of previous micro-
bunches and the coupling of external rf power into the
cavity. We allow for a linear time dependence of the cur-
rent and forward power, so that both By and Bp are
constant over the time interval. After integrating the
equation between times 7 and 7, and dropping terms of

(B47)

order O <$), we find our short term solution

V() = V.

Ve(r
[B 28 o RyFyByI ]
+ Fm F(T1)— Ay Dy b(Tl) X

1)€—a(72—71)

X

cospe™ ¥ [1 — e_a(“_ﬁ)] . (B48)

We define a (complex-valued) beam impedance by 7y =
Ry FyBy. The solution to the circuit voltage is then

VC(TZ) — ‘Z(Tl)e—a('rz—n)
1+ Br =22 Go(r) - 2 )]x
) — T
F/),_+_1 F(T1 p4p(T1
x cos e ¥ {1 — e_a(“_ﬁ)] . (B49)
This solution is seen to track both losses and phase shifts

due to beam loading and phase slippage on the slow time-
scale.

¢ Observed Fields and Power Flow

The physical observables, the time-dependent rf mode
amplitudes, are derived from these circuit voltages. The



observables have the time dependence
ax(t) = ax(t) cos(wpt + @alt)),

(
Jx(t) = Tx(t) cos(wpt), (B51)
ViE(t) = 5F (1) cos(wit + w4 (1)). (B5:

(W)
~—

Depending upon the voltage normalization scheme (B27,
B29), the amplitudes and phases of the fields and modes
are then

w0 =[] =~ (2)
UE(H) = Via | T2 px(t) = —L (‘31*) (B53)

in the mode transit normalization,

s eat) =—<£ (‘Z)

() = |V o) =~ (Vi)

G(t) = \VV—

(B54)

and in the port overlap normalization.

Of interest is the amount of rf power flowing into and
out of the cavity derived from the Poynting flux. The
waveguide modes are normalized such that the transverse
electric fields satisfy a relation similar to (B2). The net
rms power flowing in the waveguide, again assuming a
single mode, can then be shown to be

G G

Pguide = 2ch ) (B55)
with
—~\ 2
~ ()
P B
+ 2261 ) ( 56)
—~\ 2
5o () @)
27,

denoting the forward and reverse rms power flows in the
connecting waveguide, respectively. Translating this into
the normalization schemes gives

2 2

P Ve VeVp

P+ = 26&1); 1:0 ) F_ = 265;:; wo ; (B58)
— Vet — Ve-Vr |
Py=%7-, P =", (B59)

in the mode transit and port overlap schemes, respec-
tively. Note that the reverse voltage has been expressed
in terms of the forward and cavity voltages.

The rms value of the energy stored in the cavity is
given by

U, = %0 By (B60)
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The rms power shunted to the walls and to the reverse
waveguide mode can derived by appealing to the defini-
tion of the quality-factor,

p= 2l
Q
Hence, the wall-loss power and the reverse power are
given by

(B61)

_ » |
P, = 4l = goa 537, (B62)
P 2 .

P_=gl = ol (B63)

as expected. From energy conservation, the sum of these
shunted powers must equal the power obtained from the
beam and the forward power,

Py+PL=P,+P_. (B64)

d Steady-State Behavior

In the limit of steady-state behavior, the differential
circuit equation (B43) becomes the algebraic equation

V, = <ﬁzflf/; — beb) cos eV, (B65)

Ve=V.—Vp. (B66)
We compute the reverse power flow in terms of the for-
ward power flow and beam coupling,

P_ =
—~ 2

28 Ve _ Fy —iy _ Vg
(,6+1 - RAII,JO) cos e -

)
2Qewt

(B6T)

The complex-valued phasors are represented by (B53) or
(B54), and

— = e~

b ‘Q (B68)

wo wo



The reverse power flow is then

P_=P, I:sim2 P+ <%) cos? 1/)]

In the absence of any forward power flow, all power 1s
shunted from the beam into the cavity walls as well as
coupled through the exterior waveguide. The power loss
to the beam is then

P, =P, +P. (B70)
= 9 o 1Y o e 2 (BT1)
T 2Qr |,
eowy | 1 2
— — RZIZ F 2 2
2QL‘ My [Fo|” cos™ ¢
9 2
= ;0WA — [E] I2 | Fy|? cos® 4
QL ¢y [%] Q
272 R 2 .
=Ib°QrL 0 cos” 1, (B72)
where we identify the bunching parameter, b, as
b=|F|. (B73)

3 Internal Micro-Bunch Dynamics and the
Averaged Shunt Impedance

In this section we calculate the bunch-averaged value
of the shunt impedance. This will necessitate a somewhat
closer inspection of the intra-bunch particle dynamics as
the beam crosses the cavity. In particular, we need to
examine slippage effects that determine the beam loading
effects in the interaction.

From our definition of the shunt impedance (B30) we

(e

W (wp, 7o) = / dzE (T 1, 2) exp [—iwpt(2)]
cavity
(B75)

and Wy = W(wp, T = 0). In the usual linac formula-
tion, the function wq is calculated by assuming a con-
stant velocity, By, of particles through the cavity. In
that case #(z) = to + (z — z0)/(Poc) . Here, we allow for

o To (@) (B74)

€oWx

where

Qe:ct

— Zﬁ
2
+ \/P+Qm |Fy|* IZRy cos? ¢ [[3+1
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|Fy)° I? Ry cos® 4 +

costp cos (gp — py) — cos (¥ + g5 — o4)

(B69)

intra-bunch particle motion resulting from a finite beam
energy spread, and from the influence of rf fields pre-
existing with the cavity. We determine the value of ¢
from the fiducial orbit.

To calculate the trajectory dependent mode transit
function, @' (wp, 7 1), we maintain the spirit of our
tracking code and appeal to the power series expansion.
For a SW monopole mode, we use

E(FT, 2) = fo(2) + 72 fo2) + 7] fa(2) +

where r2 = 2% + y?, and the auxiliary functions are

(primes denoting total derivatives with respect to z)

(B76)

Jo(z) = E.A(FL = 0,2) = Naeo(z), (B77)
fz(z) = —1/4N)\( + koeo) (B78)
fa(z) = 1/64N,(ey” + 2k3ey + kgeo),  (BT9)

and k9 = wx/ec. This particular set of series coeffi-
cients follows from the requirement that E,(7T,z) sat-
1sfy the wave equation. As shown, the mode field profile
E.\(71, z) carries the ’Slater’ normalization, while the
field eq(z) has the ’line voltage’ normalization. With the
form of the mode profile expressed in (B76), we re-write
the mode transit functions as

= / ) dz (fo(2) + 3 fa(2) + v fa(2)) exp [iwst(2)]

Wo = / dz fo(z) exp [—iwpt(2)] . (B80)
cavity

In evaluating these integrals during the simulation, we
break up the interval covering the entire longitudinal
length of the cavity into a set of shorter sub-intervals
(on the order of 10). In each sub-interval, we will as-
sume that individual particle transverse coordinates do
not change appreciably. Then, for each particle in the
simulation, we replace r2 and r} by the values r? and

E, averaged over the sub-interval. Equation (B80) can
be re-written as

i
cavity

T o
cavity

+rd / ) dzfa(z)exp [iwpt(2)].  (B81)



In these integrals, the arrival time in the exponential is a
dynamical coordinate of each particle. We may express
the arrival time of an individual particle as the sum of the
fiducial arrival time with the time deviation coordinate
of the particle, t = ¢ + ¢.

In computing the micro-bunch averages over the sub-
intervals, we further assume that the individual parti-
cle longitudinal phases (ie. arrival times) remain nearly
constant with respect to the fiducial. We will use the
notation

wi(z)= (w/e)et(z) = k s(2)

kso(z) + ks(z)

~ kso(z) + ks, (B82)
where sg(z) is the scaled arrival time coordinate for the
fiducial at beamline position z, and 5§ measures the devi-
ation in scaled arrival time between individual particles
and the fiducial. From (B81), the ’kth’-order mode tran-

sit function 1s

fcavity dsz(z) €xp [Zwbt(z)] =
= exp [iky 3] fca'uity dz fr(z) exp [ikpso(2)] (B83)

= exp [iky3] @] (B84)

where (k=0, 2, 4, etc.), and the integrals are to be per-
formed over the fiducial quantities only.

For the beams of interest to us for RK-TBA devices,
the longitudinal phase space is characterized by micro-
bunches which subtend a significant fraction of the rf
wavelength, with small instantaneous energy spread and
significant correlation between energy and arrival time.
By retaining nonlinearities in the equations of motion to
only low orders, large errors are accumulated for particle
orbits lying far from the fiducial. We ameliorate this sit-
uation by computing the transfer maps induced by mul-
tiple fiducials. The original fiducial (called the ’central’
fiducial) is retained to provide continuity, but temporary
fiducials are added to more accurately describe the entire
micro-bunch dynamics by sampling different portions of
the longitudinal phase space. This can be rapidly evalu-
ated in the simulation environment.

The bunch-averaged shunt impedance is evaluated by
taking averages over the spatial and phase coordinates of
the particles in the micro-bunch

2 | ol

(Ra) = Qx [g] Fy=Q»x { }Fb, (B85)
A
Fy = (exp [tkp5])
Wl /=
+ ﬁ_? <7’2L exp [zkb§]>
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~t
+ if—? <rjl_ exp [zkb§]> . (B86)
W

This last form serves to define the bunch-averaged form
factor, Fy. In practice, the micro-bunch form factor
(B86) is calculated by integrating the differential contri-
bution to Fj over all of the sub-intervals comprising the
rf gap as described above. Doing so, the calculation of F3
includes contributions from intra-bunch particle motion
during the interaction and, as such, includes any beam-
loading effects. The micro-bunch form factor (B86) is
seen to differ from the usual definition [48]

fo = (exp [i6]) ,

here 6 is the longitudinal phase of an individual electron
in the micro-bunch, in that (B86) includes higher-order
longitudinal and off-axis effects. These effects are usually
described by a gap-coupling coefficient and/or a beam-
loading admitiance [49] in the klystron literature.
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